The Preparation of Pyridiniums from Pyryliums ¹

By Alan R. Katritzky,* Jeremy M. Lloyd, and Ranjan C. Patel, School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, England and Department of Chemistry, University of Florida, Gainsville, Florida 32611, U.S.A.

Mild preparative conditions are described for the reaction of primary alkyl-, secondary alkyl-, and aryl-primary amines (including weakly basic amines) with pyryliums (including those with bulky α -substituents). Conditions were optimised by ¹³C n.m.r. studies.

OUR transformation scheme for primary amines $(1)-(4)^2$ involves the reaction of pyryliums [cf. (2)] with amines to form intermediate pyridiniums [cf. (3)] which then react with nucleophilic, electrophilic, and radical initiating reagents. The wide synthetic applicability of this method has encouraged optimisation of both the reaction steps. Many pyryliums with different ring substituents have been prepared and the corresponding benzylpyridiniums used to assess kinetically structure/reactivity relationships.³

$$R-NH_2 + \underbrace{\longrightarrow}_{0} \xrightarrow{\mathbb{N}}_{\mathbb{N}} \xrightarrow{\mathbb{N}}_{\mathbb{R}} R-X$$
(1)
(2)
(3)
(4)

This paper describes mild preparative conditions for the reaction of (i) 2,4,6-triphenylpyrylium (5a) with hindered (secondary alkyl) and weakly basic primary amines and (ii) pyryliums having bulky α -substituents with primary alkyl-, secondary alkyl- and aryl-primary amines. The optimum conditions for these reactions were developed using ¹³C n.m.r. spectroscopy; chemical shifts for the starting materials, products, and intermediates of this paper are listed and assigned elsewhere.⁴

Previous Preparative Conditions.—Previously, primary alkyl-primary amines have been treated with 2,4,6triphenylpyrylium (5a) at 20 °C by stirring them in ethanol for 12 h (65-87%)⁵ or stirring them in chloroform for 10-20 h (54-84%).⁶ Reactions of secondary alkyl-primary amines, with pyrylium tetrafluoroborates have only been reported for cyclohexylamine; 7 it reacted with difficulty and no yield was quoted. Less generally useful iodides gave pyridiniums at 20 °C on being stirred in diethyl ether for 12-30 h (73-91%).⁸ Aryl amines have previously required stronger conditions; refluxing ethanol for 2-3 h for 2,4,6-triphenylpyrylium (5a) (81-98%) 8,9 and 5,6-dihydro-2,4-diphenylbenzo-[h]chromenylium (11a) (74–98%).⁹ Weakly basic' aryl amines (2-, 3-, and 4-nitroanilines) reacted with 2,4,6-triphenylpyrylium (5a) only after a prolonged period under reflux (2- and 4- in dimethylformamide 10 and 3- in ethanol¹¹) to give the corresponding pyridiniums [(5p) in 5%, (5o) in 84%, (5n) in 85%].

Previous Mechanistic Work.—Balaban studied the mechanism of the reactions of 2,4,6-triphenylpyrylium (5a) with methylamine and ammonia and isolated divinylogous amide intermediates (17).^{12,13} The kinetics of hydrolysis of pyryliums (14) to 2-ene-1,5-diones (15) ¹⁴

and of the reverse reaction ¹⁵ have been studied. Kinetic studies of reactions of pyryliums with methoxide ion ^{16,17} indicated that 4-adducts are formed kinetically but pentadienones (*via* 2-adducts) are favoured thermo-dynamically.

		-	
a; O	e; N-neoC ₅ H ₁₁	i; N-cycloC ₅ H ₉	m; N-2,4,6-Me ₃ C ₆ H ₂
b; NBu ⁿ	f; NPr ⁱ	j; N-cycloC ₇ H ₁₃	n; N-4-NO ₂ C ₆ H_4
c; NCH ₂ Ph	ng; NBu⁵	k; NCH(Ph)Me	o; N-3-NO ₂ C ₆ H ₄
d; N-allyl	h; N-cycloC ₆ H ₁₁	1; NPh	p; N-2-NO ₂ C ₆ H ₄

In our laboratory, 13 C n.m.r. investigations showed only 2-adduct formation from 2,4,6-triphenylpyrylium (5a) and methoxide; 18 secondary amines gave stable divinylogous amides, 19 whereas the amide from nbutylamine slowly cyclised to pyridinium (5b). U.v. investigations 20 confirmed these conclusions and showed that divinylogous amide (17) formation from weakly basic amines is catalysed by triethylamine. Ring closure to pyridiniums (18) was catalysed by acetic acid (rate increase *ca*. 10³) and enhanced in apolar solvents. Primary alkyl-primary amines reacted *ca*. 10² faster than secondary alkyl-primary amines. 20 Negative ρ values 21 for reactions of 2,4,6-triphenylpyrylium (5a) with substituted anilines or benzylamines indicate positive charge build up in the rate-determining step.

¹³C N.m.r. Investigations.—Suitable preparative conditions were explored using ¹³C n.m.r. spectroscopy to follow the ring-opening-closure sequence. As previously noted,¹⁹ the characteristic peaks for pyrylium (14), divinylogous amide (17), diketone (15), and pyridinium product (18) each fall in distinct regions ⁴ and enable all four classes of compound to be recognised quantitatively in the presence of each other. In some reactions, cyclic adducts (16) are found in place of vinylogous amide, and this can also be followed.⁴ study of the reaction of n-butylamine with (5a) showed conversion into pyridinium (5b) within 20 min (Method A).¹⁹ The same reaction with addition of acetic acid led to almost quantitative isolation of pyridinium in the same time (Method C).

The effect of acetic acid is clearly observed in experi-

Reaction rates and products utilising 2 mol equivalents of amine to one of pyrylium at 20 °C (procedure of 19) (Method A), were unaffected by use of 1 equivalent each of amine, pyrylium, and triethylamine (Method B). Methods C and D utilised acetic acid catalysis of ringclosure ²⁰ with 2 equivalents of amine : 1 pyrylium or 1 amine : 1 pyrylium : 1 triethylamine.

For reactions between the tricyclic pyrylium (11a) and hindered amines, it was found advantageous to stir the reaction mixture for 30 min before addition of acetic acid (Method E). Weakly basic nitroanilines required scavenging of water before addition of the amines (Method F).

¹³C N.m.r. study of numerous pyrylium-amine reactions ⁴ has demonstrated that certain pyrylium 2,6substituents, or α - or β -branching and/or weak basicity in the amines hinders divinylogous amide cyclisation sterically or electronically. For weakly basic arylamines, the rate of amide formation becomes rate-determining.

RESULTS AND DISCUSSION

Preparations of pyridiniums in CH_2Cl_2 at 20 °C are reported in Tables 1—3. Products were precipitated with ether and washed with water to remove RNH_3^+ or Et_3NH^+ before characterisation (Tables 4 and 5).

Reactions of Alkylamines with 2,4,6-Triphenylpyrylium Tetrafluoroborate (5a) (Table 1).—A previous ¹³C n.m.r. ments with neopentylamine (more steric hindrance due to β -branching). Method A showed by ¹³C n.m.r. immediate conversion into divinylogous amide which subsequently cyclised after 5—7 days. With acetic acid (Method C) after 20 min 69% pyridinium (5e) was isolated.

Similar reductions in reaction time were observed for secondary alkyl-primary amines. Whereas by Method C isopropylamine gave 88% of isolated pyridinium (5f) after 20 min, using Method A cyclisation of amide required 3—10 days as shown by ¹³C n.m.r. spectroscopy. Method C was used for the preparation of further *N*cycloalkylpyridiniums (5h), (5i), and (5j) required for other work.²²

As shown by ¹³C n.m.r. spectroscopy, 1-phenylethylamine reacts readily with (5a) (Method A) giving amide which rapidly (ca. 20 min) formed 2,4,6-triphenylpyridine and 1-phenylethanol (shifts due to the alcohol: 70.2, 25.1 p.p.m.; lit.,²³ 69.9, 25.0). The intermediate pyridinium (5k) has considerable steric crowding in the 1-, 2-, and 6-positions; we believe that it rapidly dissociates by an $S_{\rm N}1$ process (observed kinetically for *N*cycloalkyl-2,4,6-triphenylpyridiniums in chlorobenzene ²⁴) to give the resonance-stabilised secondary carbocation (18) which is trapped by water. The application of this facile transferance of the 1-phenylethyl substrate is reported elsewhere.²⁵ t-Butylamine is shown by ¹³C n.m.r. spectroscopy to react readily with triphenylpyrylium (5a) to give an amide. Instead of cyclisation to pyridinium, the amide is slowly converted into diketone. Addition of acetic acid to this amide gives immediate reversion into pyrylium together with some conversion into diketone. readily with benzylamine but the observed intermediate is a cyclic 2-adduct (16) which is converted with or without acetic acid solely into diketone.

5,6-Dihydro-2,4-diphenylbenzo[h]chromenylium (11a) and n-butylamine (with or without acetic acid) gives pyridinium (11b). For the chromenylium (11a) and

	Reaction	ns of alkyla	mines with 2,	4,6-triphenyl From ¹³ C n.m	pyrylium tetraf .r.ª experiments	luoroborate		
			Pyrylium: time for	Amide: time for	~%	% Dilectore	Prej exp	parative erime n ts
Pyridinium	Amine	Method	disapp.	(days) b	formed	formed	t/h	Y (%)
(5b)	n Butul	A	(11111.)	(days)	Tormou	lormou	0.3	- (707
(30)	n-Butyl	Ĉ					0.3	96
(50)	Neopentyl	Ă	< 10	57	100	0	0.0	
(56)	Reopentyr	Ĉ		• •	100	Ũ	0.3	69
(5f)	Isopropyl	Ă	< 10	310	100	0		
(01)	isopiopyi	ĉ	< 10	d	100	Õ	0.3	88
(5g)	s-Butvl	č					0.3	81
(5h)	Cyclohexyl	Ă	< 10	< 9	100	0	48	38
(0)		С	< 10	d	100	0	0.3	79
(5i)	Cyclopentyl	Ċ					0.3	91
(5i)	Cycloheptyl	С					0.3	77
	l-Phenvlethvl	Α	< 10	$<\!3$	0 •	0		
	5 5	в	< 10	< 9	0 •	0		
	t-Butyl	Α	< 10	< 9	0	100		
	~	С	< 10	d	0	100 1		

TABLE 1

^a CDCl₃. ^b No adduct (16) was observed by ¹³C n.m.r. ^c I.r. and n.m.r. identical with analytical specimen (Tables 4 and 5). ^d No amide (17) was observed by ¹³C n.m.r. ^c Pyridinium reacts further to pyridine. ^f Some pyrylium precipitates.

Reactions of Alkylamines with Other Pyrylium Tetrafluoroborates (Table 2).—With pyryliums 2- and/or 6substituted by 2-thienyl groups, t-butylamine reacted to give a stable amide (see Table 2). [Note with benzylamines, 4-phenyl-2,6-di-(2-thienyl)pyrylium was converted rapidly into pyridinium (10c).⁶

2-Methyl-4,6-diphenylpyrylium gives intermediate amides (20) which can cyclise in two different ways. Rapid reaction with n-butylamine with or without acetic acid gives pyridinium, *cf.* triphenylpyrylium (5a) (see above), but reaction with cyclohexylamine leads instead to *N*-cyclohexyl-3,5-diphenylaniline (*cf.* 2,4,6-trimethylpyrylium ²⁶).

2-(t-Butyl)-4,6-diphenylpyrylium reacts with benzylamines at the phenyl-substituted α -carbon,⁴ giving an amide which slowly cyclises to pyridinium (7e). Application of Method C leads to pyridinium formation in 20 min. 2,6-Di-(t-butyl)-4-phenylpyrylium also reacts isopropylamine, where steric hindrance arises from both pyrylium and amines, Methods C and D led to considerable diketone formation. However, triethylamine catalysis of amide formation and after 30 min acetic acid catalysis of cyclisation (Method E) gave pyridiniums from neopentylamine (81%), isopropylamine (69%), and s-butylamine (62%) (isolated yields).

The more hindered 2-(t-butyl)tricyclic pyrylium (12a) reacts with n-butylamine and benzylamine to give adducts (16) which require acetic acid for rapid con-

 TABLE 2

 Reactions of alkylamines with other pyrylium tetrafluoroborates and other salts

 From ¹³C n.m.r.^a experiments

									1 IOM (, in the second	permients			
Pyri-		P: sub	yryliu stitue	m ents				Pyrylium: time for	Amide: time for	Adduct: time for	%	%	P	rep. iments
dinium	5							disapp.	disapp.	disapp.	Pyridinium	Diketone		Y
no.	K.	R	R*	Rª	R۰	Amine	Method	(min)	(days)	(days)	formed	formed	t/h	(%) °
(6b)	Me	н	Ph	н	Ph	n-Butyl	A C	<10	с	d	100	0	3.5 0.3	73 70
						Cyclohexyl	Α	< 10	с	d	0 .	0		
(7c)	$\mathbf{Bu^t}$	н	\mathbf{Ph}	н	Ph	Benzyl	A f	< 10	37	d	100	0		
							С	< 10	с	d	100	0		
	${\operatorname{Bu}}^{{\operatorname{t}}}$	\mathbf{H}	\mathbf{Ph}	н	$\mathbf{Bu^t}$	Benzyl	A^{f}	< 10	с	714	0	100		
							С	$<\!10$	с	d	0	100		
g	Th ^A	Н	\mathbf{Ph}	Н	\mathbf{Ph}	t-Butyl	A f	< 10	>7	d	0	0		
$(10c)^{g}$	\mathbf{Th}	н	\mathbf{Ph}	н	Th	Benzyl	Α	< 10	с	d	100	0		
						t-Butyl	A	< 10	>7	d	0	0		
				_			A f	$<\!10$	> 21	d	0	0		
(11b)	\mathbf{Ph}	Н	\mathbf{Ph}	C	_s H _s i	n-Butyl	A	< 10	с	d	100	0		
/ x							C	$<\!10$	с	d	100	0		
(11e) g						Neopentyl	E						23.5	81
(11f)						Isopropyl	c	< 10	с	d	60 ³	40 j	3	11
							D	$<\!10$	с	d	50 j	50 j		
g							E						23.5	69
(11g) g				_		s-Butyl	E						24.5	62
(12b)	$\mathbf{Bu^t}$	н	Ph	C,	_s H _s	n-Butyl	A	< 10	с	2	100	0	504	86
							C	< 10	с	<3	100	0		
						_	D						0.3	43
(12c)						Benzyl	A	$<\!10$	с	$<\!5$	80 <i>k</i>	20 k	168	52
							D				_	_	0.3	64
						Isopropyl	Α	< 10	с	> 10	0	0		
							С	$>10^{l,m}$	с	d	0	50 m		
$(13c)^{n}$	C ₈	H ₈	\mathbf{Ph}	С	_в Н _в	Benzyl	Α	< 10	с	d	100	0		
(13d) n						Allyl	A °						0.3	93
							в						11	88
						Neopentyl	Α						18	0
							в						21	0
							E						15	0

^a In CDCl₃. ^b I.r. and n.m.r. identical with analytical specimen (Tables 4 and 5). ^c No amide (17) was observed by ¹³C n.m.r. ^d No adduct (16) was observed by ¹³C n.m.r. ^e Quantitative conversion of pyrylium into N-cyclohexyl-3,5-diphenylaniline. ^f In (CD₃)₂SO. ^e Perchlorate. ^h 2-Thienyl. ⁱ α,β -Dihydronaphtho. ^j Calculated from relative peak heights of pyridinium γ -carbon and corresponding to pyridinium γ -carbon. ⁱ C30% Pyrylium, 50% diketone after 10 min. ^m Calculated from relative peak heights of pyrylium used.

TABLE 3 Reactions of anilines with pyrylium tetrafluoroborates

						From ¹³ C n.m.r. ^{<i>a</i>} experiments							
Pyri- dinium		P: sub	yryliu stitue	im ents		Aniline		Pyrylium: time for		% Diketone	experiments		
no.	$\widetilde{\mathbf{R}^2}$	R ³	R4	R ⁵	R6	substituents	Method	disapp.	formed	formed	t/h	Y (%)	
(51)	\mathbf{Ph}	н	Ph	н	\mathbf{Ph}		D	< 10 min	80 d	20 ^d			
(/							D e	$< 10 \min$	100	0	0.3	77	
(5m)						2,4,6-Trimethyl	Α	< 9 days	100	0			
· /						•	A f	< 5 h	100	0	0.3 🕫	51	
							Α				3 9	69	
							в	$<\!2~{ m days}$	30 d	70 ^d			
							в М	$< 10 \min$	0	100			
							D	$< 10 \min$	40 d	60 d			
							\mathbf{F}				0.3	36	
(5n)						4-Nitro	В	$< 10 \min$	20	80			
							в и	< 10 min	10 d	90 a			
							D	$< 10 \min$	30	70			
							\mathbf{F}				0.3	59	
							\mathbf{F}				0.6 4	64	
							F				3	64	
(50)						3-Nitro	\mathbf{F}				0.3	53	
. ,							F				0.6 🕯	58	
							F				3	60	
(5p)						2-Nitro	в	< 10 min	0	100			
• • •							F	> 2 h	0	0	55 j	18	
(61) ^k	Me	Н	\mathbf{Ph}	\mathbf{H}	\mathbf{Ph}		Α	$< 10 \min$	100	0	0.3	96	
(6m) *						2,4,6-Trimethyl	A f	$<\!2$ days	100	0	3 ø	24	

^a In CDCl₃. ^b No amide (17) or adduct (16) was observed by ¹³C n.m.r. ^c I.r. and n.m.r. identical with analytical specimen (Tables 4 and 5). ^d Calculated from relative peak heights of pyridinium γ -carbon and corresponding carbon of diketone. ^e Two equivalents of Et₃N. ^f In (CD₃)₂SO. ^e In Me₂SO (1 ml). ^h Five equivalents of Et₃N. ⁱ Stirring for 20 min before HOAc addition followed by a further 15 min. ^j Refluxing. ^k Perchlorate.

	Substituents										Found (%)							(%)
Cpd. no.	$\overline{R^2}$	R³	R4	R⁵	R	N-Substituent	Cryst. solvent	Crystal form	М.р. (°С)	Lit. m.p. (°C)	Ref.	Ċ	н	N	Formula	c	- Д	N
(5b)	Ph	н	\mathbf{Ph}	н	Ph	n-Butyl Noopentyl	Ma CO Et O	Needles	199 - 201	201 - 202	5	721	6.0	29	C. H. BF.N	723	6.0	3.0
(5f)						Isopropyl	Me ₂ CO-Et ₂ O Me ₂ CO-Et ₂ O	Needles	187 - 189	172	a	71.2	5.1	3.1	C ₂₆ H ₂₆ BF ₄ N C ₁₆ H ₂₆ BF ₄ N	71.4	5.5	3.2
(5g) (5h)						Cyclohexyl	Me ₂ CO-Et ₂ O	Needles	179-180	180	a	72.9	5.9	2.9	C ₂₉ H ₂₈ BF ₄ N	73.0	5.9	2.9
(51) (5j)						Cyclopentyl	Me ₂ CO-Et ₂ O Me ₂ CO-Et ₂ O	Needles	163 - 164 168 - 170	159-161	22	72.3 73.2	6.1	$\frac{2.9}{2.8}$	$C_{30}H_{30}BF_{4}N$	72.6 73.3	5.6 6.1	3.0 2.9
(51) (5m)						Phenyl 2,4,6-Tri-	EtOH	Needles	$251 - 253 \\ 214 - 216$	291	a	75.0	5.4	2.7	$\mathrm{C_{32}H_{28}BF_{4}N}$	74.9	5.5	2.7
(5n)						4-Nitrophenyl	EtOH	Plates	239-241	239	a	67.6	4.0	5.4	C ₂₉ H ₂₁ BF ₄ N ₂ O ₂	67.4	4.1	5.4
(50) (5p)						3-Nitrophenyl 2-Nitrophenyl	EtOH	Brown	$244 - 246 \\ 170 - 172$			67.6 67.7	4.0	$5.1 \\ 5.3$	$C_{29}H_{21}BF_4N_2O_2$ $C_{29}H_{21}BF_4N_2O_2$	67.4 67.4	4.1 4.1	5.4 5.4
(6b)	Me	н	Ph	н	Ph	n-Butyl	EtOH	Plates	138-140			68.3	6.2	3.5	C22H24BF4N	67.9	6.2	3.6
(61) ø (6m) ø						Phenyl 2,4,6-Tri-	EtOH	Green	230-232 159161			68.2 70.0	4.7 5.7	3.3 3.0	$C_{24}H_{20}CINO_4$ $C_{27}H_{20}CINO_4$	68.3 69.9	$\frac{4.8}{5.6}$	3.3 3.0
(11e) ø	Ph	н	Ph		C ₈ H ₈ ¢	Neopentyl	Me ₂ CO-Et ₂ O	Needles	229-231			71.6	6.0	2.8	C30H30CINO4	71.5	6.0	2.8
(111)0						Isopropyl	Me ₂ CO-Et ₂ O	amorphous	140142			70.5	5.6	2.9	C ₂₈ H ₂₈ CINO ₄	70.7	9.9	2.9
(11g) b						s-Butyl	Me ₂ CO–Et ₂ O	Yellow	137—139			71.0	5.8	2.8	C ₂₉ H ₂₈ ClNO ₄	71.1	5.7	2.9
(12b)	But	н	₽h		с.н.	n-Butyl	Me Co-Et O	powder Needles	142144			70.9	6.9	3.1	Cas Has BF. N	70.9	7.0	3.1
(12c)	Du		• ••		08.18	Benzyl	Me ₂ CO-Et ₂ O	Plates	145 - 147			73.4	5.9	2.8	C ₃₀ H ₃₀ BF ₄ N	73.3	6.1	2.9
(13d) đ	C ₈ I	H,	Ph		C ₈ H ₈	Allyl		Yellow- green needles	217—219			67.5	4.7	2.6	C ₃₁ H ₃₆ F ₃ NO ₃ S	67.8	4.7	2.6

a M. C. Rezende, Ph.D. Thesis, University of East Anglia, 1979. b Perchlorate. $\epsilon_{\alpha,\beta}$ -Dihydronaphtho. d Trifluoromethanesulphonate.

					I.r. 4	^{<i>i</i>} and ¹ H n.	m.r. ^o spectra of N-substituted pyri	dinium t	etrafluoroborates		
		Sul	bubstituents Chemical shift (δ)								
Cpd. no.	R*	R٩	R4	R ⁶	R.	N-Substituent	$(\nu_{\rm max.} { m cm}^{-1})$	Aromatic	N-Substituent	R¹	R⁴
(5b)	Ph	н	Ph	н	Ph	n-Butyl	3 030m, 1 623s, 1 600m, 1 580m, 1 490m, 1 411m, 1 030-1 075s	7.9—8.5 (17 H)	4.4 (2 H, t, J 7.5 Hz), 0.3-1.6 (7 H)		
(5e)						Neopentyl	3 065m, 1 610s, 1 595m, 1 578m, 1 495m, 1 409m, 1 030, 1 095c	7.0-8.6	5.0 (2 H, s), 0.45 (9 H, s)		
(5f)						Isopropyl	3 050m, 1 620s, 1 600m, 1 558m, 1 495m,	7.0-8.3	4.8-5.5 (1 H), 1.35 (6 H, d, J		
(5g)						s-Butyl	3 060m, 1 624s, 1 600m, 1 567m, 1 495m,	(17 H) 7.2—8.0	4.5 - 5.1 (1 H), 1.0 - 2.2 (2 H),		
							1 414m, 1 030—1 080s	(17 H)	1.35 (3 H, d, J 6 Hz), 0.6 (3 H, t, J 7.5 Hz)		
(5h)						Cyclohexyl	3 060m, 1 626s, 1 600m, 1 567m, 1 493m, 1 411m, 1 040-1 080s	7.2—8.1 (17 H)	4.2-4.9 (1'H), 0.4-2.4 (10 H)		
(5i)						Cyclopentyl	3 045m, 1 620s, 1 601m, 1 567m, 1 492m, 1 413m 1 025 1 095s	7.2—8.1 (17 H)	4.6-5.4 (1 H), $1.6-2.5$ (4 H), $0.7-1.4$ (4 H)		
(5j)						Cycloheptyl	3 050m, 1 620s, 1 597m, 1 570m, 1 490m,	7.2-8.1	4.5-5.1 (1 H), 0.6-2.7 (12 H)		
(51)						Phenyl	3 020m, 1 628s, 1 601m, 1 562m, 1 495m,	6.9-8.1	v		
(5m)						2,4,6-Tri-	1418m, $1035-1085s3050m$, $1620s$, $1600m$, $1580m$, $1495m$,	(22 H) 6.65–8.2	2.1 (3 H, s), 1.95 (6 H, s)		
(5n) ¢						methylphenyl 4-Nitrophenyl	1 413m, 1 030—1 080s 1 3 070m, 1 628s, 1 598m, 1 560m, 1 526s,	(19 H) 7.15—8.8			
(50) e						3-Nitropheny	1 493m, 1 418m, 1 351s, 1 0201 110s 3 070m, 1 628s, 1 600m, 1 549m, 1 539s,	(21 H) 7.15—8.85			
(5p) ¢						2-Nitrophenyl	1 499m, 1 419m, 1 353s, 1 030-1 080s 3 060m, 1 620s, 1 600m, 1 553m, 1 530s.	(21 H) 6.98.7			
(6b) d.e	Me	н	Ph	н	Ph	n-Butyl	1 494m, 1 412m, 1 342s, 1 030-1 070s 3 050m, 1 630s, 1 600m, 1 568m, 1 490m,	(21 H) 6.95-8.5	44(2H, t. 18Hz), 2.1(2H)	2.95	
(61) c.e				••	• •	Phenyl	1 415m, 1 010-1 060s	(12 H) 7 1	1.25 (3 H, t, J 8 Hz), 0.65 (2 H)	(3 H, s)	
(01) •,•							1 414m, 1 070-1 100s	(17 H)		(3 H, s)	
(om) c, e	, 					2,4,6-111- methylphenyl	1 411m, 1 080-1 100s	(14 H)	2.5 (5 H, S), 2.0 (6 H, S)	(3 H, s)	
(11e)¢, e	Ph	н	Ph	(C ₈ H ₈ 7	Neopentyl	$3\ 060m$, 1 $609s$, 1 $596m$, 1 $571m$, 1 $480m$, 1 $414m$, 1 070 —1 $100s$	7.3—8.5 (15 H)	4.75-5.6 (2 H), 0.45 (9 H, 9)		2.95 (4 H, s)
(11f) e						Isopropyl	3 060m, 1 610s, 1 598m, 1 571m, 1 496m, 1 427m, 1 070-1 100s	7.2—8.3 (15 H)	5.0—5.7 (1 H), 1.45 (6 H, d, J 6 Hz)		2.85 (4 H, s)
(11g) e						s-Butyl	3 055m, 1 610s, 1 595m, 1 545m, 1 494m, 1 427m, 1 065—1 100s	7.2—8.5 (15 H)	4.8-5.4 (1 H), $1.1-2.3$ (2 H), 1 (3 H, d, J 7.5 Hz), 0.55 (3 H, t,	.5	2.85 (4 H, s)
(12b)	But	н	Ph	(с.н.	n-Butvl	3 035m, 1 607s, 1 597m, 1 571m, 1 486m.	7.2-8.4	J 7.5 Hz) 5.1-5.5 (2 H), 0.5-1.5 (4 H).	1.7	2.8
(12c)						Benzvl	1 421m, 1 030—1 070s 3 060m, 1 610s, 1 600m, 1 578m, 1 480m.	(10 H) 6.9-8.4	0.65 (3 H, t, \tilde{J} 6 Hz) 6 45 (2 H, s)	(9 H, s)	(4 H, s) 2 5-2 9
(13d) a.	л (.н.	Ph	(с.н.	Allyl	1 408m, 1 030—1 090s 3 060m 1 605s 1 589m 1 560m 1 490m	(15 H) 7 2-8 7	4 5-6 1 (5 H)	(9 H, s)	(2 H)
(100) .	<i></i> C	8118		``	-gilg	Allyl	1 410m, 1 250—1 280s, 1 028s	(13 H)	4.5-0.1 (5 11)	(8 H, s)	(2 H)
∉In C	HBr	. b I	n CDO	Cl ₃ .	¢ 1H N.n	n.r. in (CD ₃) ₃ SO	. d I.r. in Nujol. e Perchlorate. $f \alpha, \beta$ -Dihydron	aphtho. 🏿 🖉	rifluoromethanesulphonate. A 1	H N.m.r. i	n CF ₅ CO ₅ H .

TABLE 5	
I.r. ^a and ¹ H n.m.r. ^b spectra of N-substituted pyridinium t	etrafluoroborates

version into pyridinium; Method D gave pyridiniums in 43 and 64% isolated yields respectively.

Isopropylamine gave a mixture of addition products which was converted into diketone by acetic acid.

Pentacyclic pyrylium (13a) with benzylamine (Method A) gave rapid conversion into pyridinium (13c). Allylamine also reacted readily giving 93% isolated yield of pyridinium after 20 min but no pyridinium could be obtained from reaction with neopentylamine.

Reaction of Arylamines with Pyrylium Tetrafluoroborates (see Table 3).—Aniline reacts rapidly with (5a) in the presence of 2 equivalents of triethylamine (1 equiv. triethylamine caused some conversion into sideproduct diketone) to give the tetraphenylpyridinium (51) (Method D): 77% (51) was isolated after 20 min. Previously u.v. kinetics have shown that with weakly basic amines, catalysis by, e.g. triethylamine is required for fast amide formation.20

2,4,6-Trimethylaniline reacts without triethylamine catalysis (Method A) to give pyridinium (5m) (51% after 20 min, 69% after 3 h). Since the amide intermediate is not observed by ¹³C n.m.r. spectroscopy it is likely that slow ring opening is followed by fast cyclisation to pyridinium due to unfavourable crowding in the amide. Use of increasing triethylamine catalyst favours diketone over amide formation; however, diketone formation can also be avoided by scavenging the water (Method F gave 36% isolated pyridinium after 20 min).

Method F is used for the reactions of nitroanilines with without scavenging, considerable amounts of (5a): diketone are formed. Both 3- and 4-nitroanilines react with (5a) to give isolated pyridiniums (5o) (53%) and (5n) (59%) respectively in 20 min. Longer reaction time gives slightly increased yields. However even under prolonged period of reflux, 2-nitroaniline gave only 18% of pyridinium by Method F.

In contrast to triphenylpyrylium (5a),¹ triethylamine is not required for the reaction of aniline with 2-methyl-4,6-diphenylpyrylium. Within 10 min ¹³C n.m.r. shows quantitative formation of pyridinium (61). Using Method A 96% of (61) was isolated after 20 min. As observed for triphenylpyrylium (5a), 2,4,6-trimethylaniline did not require catalysis for conversion into pyridinium (6m) (24% isolated after 3 h).

EXPERIMENTAL

I.r. and n.m.r. spectra were measured with Perkin-Elmer 237 and R12 instruments respectively (Me₄Si as internal standard). Melting points (uncorrected) were determined on a Reichert hot-stage microscope.

Pyrylium Salts .- Literature methods were used as described elsewhere.4

¹³C N.m.r. Investigation.—Reactions of pyryliums with amines were followed by ¹³C n.m.r. as described elsewhere.⁴ In a typical experiment, the calculated quantity of amine was added to 0.2 g of pyrylium in CDCl₃ or (CD₃)₂SO (1.4 ml). CDCl₃ was replaced by CH₂Cl₂ or CHCl₃ for preparative experiments.

The percentages of pyridinium and diketone found given in Tables 2 and 3 were obtained by comparison of ¹³C peak heights. It is emphasised that these results give only a rough indication of the relative proportion of the two compounds formed: the reproducibility is $\pm 10\%$ but experiments with artificial mixtures indicated that the amount of diketone is over-estimated in this way.

Preparation of Pyridinium Tetrafluoroborates (Tables 1-5).—Method A. In a typical experiment 2,4,6-triphenylpyrylium tetrafluoroborate (1 g, 2.5 mmol) and n-butylamine (0.37 g, 5 mmol) were stirred in CH₂Cl₂ (7 ml). Addition of Et₂O (50 ml) gave the product.

Method B. 5,6,8,9-Tetrahydro-7-phenyldibenzo[c,h]xanthylium trifluoromethanesulphonate (1 g, 2.0 mmol), allylamine (0.11 g, 2.0 mmol) and Et₃N (0.20 g, 2.0 mmol) were stirred in CH₂Cl₂ (7 ml). Addition of Et₂O (50 ml), filtration, and washing with water gave the product.

Method C. 2,4,6-Triphenylpyrylium tetrafluoroborate (1 g, 2.5 mmol) and n-butylamine (0.37 g, 5.0 mmol) were added and the mixture stirred. Addition of Et₂O (50 ml) gave the product.

Method D. 2-(t-Butyl)-5,6-dihydro-4-phenylbenzo[h]chromenylium tetrafluoroborate (1 g, 2.5 mmol), n-butylamine (0.18 g, 2.5 mmol), and Et₃N (0.25 g, 2.5 mmol) were stirred in CH₂Cl₂ (7 ml) for 5 min. HOAc (0.30 g, 5 mmol) was added and the mixture stirred. Addition of Et₂O (50 ml), filtration, and washing with water gave the product.

Method E.5,6-Dihydro-2,4-diphenylbenzo[h]chromenylium tetrafluoroborate (1 g, 2.4 mmol), isopropylamine (0.14 g, 2.4 mmol), and Et₃N (0.25g, 2.4 mmol), were stirred in CH₂Cl₂ (7 ml) for 0.5 h. HOAc (0.28 g, 4.8 mmol) was added and the mixture stirred. Addition of Et₂O (50 ml) filtration, and washing with water gave the product.

Method F. 2,4,6-Triphenylpyrylium tetrafluoroborate (1 g, 2.5 mmol), EtOH (0.35 g, 7.5 mmol), and 4-nitroaniline (0.35 g, 2.5 mmol) were added in turn to a mixture of Et₃N (1.28 g, 12.5 mmol) and Ac₂O (0.52 g, 5.0 mmol) in CH₂Cl₂ (7 ml). The mixture was stirred for 5 min. HOAc (0.76 g, 12.5 mmol) was added and the mixture stirred. Addition of Et₂O (50 ml), filtration, and washing with water gave the product.

We thank the S.R.C. for a Studentship (to J. M. L.).

[1/283 Received, 19th February, 1981]

REFERENCES

¹ For a preliminary communication see A. R. Katritzky, R. H. Manzo, J. M. Lloyd, and R. C. Patel, Angew. Chem. Int. Ed. Engl., 1980, 19, 306.

- ² A. R. Katritzky, Tetrahedron, 1980, 36, 679.
- ³ A. R. Katritzky, G. Musumarra, and K. Sakizadeh, Tetrahedron Lett., 1980, 2701.
- ⁴ A. T. Katritzky, J. M. Lloyd, and R. C. Patel, Chem. Scr., in the press.
- ⁶ A. R. Katritzky, U. Gruntz, D. H. Kenny, M. C. Rezende, and H. Sheikh, J. Chem. Soc., Perkin Trans. 1, 1979, 430.
 ⁶ A. R. Katritzky, U. Gruntz, A. A. Ikizler, D. H. Kenny, and
- B. P. Leddy, J. Chem. Soc., Perkin Trans. 1, 1979, 436.
- R. Lombard and A. Kress, Bull. Soc. Chim. Fr., 1960, 1528. 8 A. R. Katritzky, N. F. Eweiss, and P.-L. Nie, J. Chem. Soc., Perkin. Trans. 1, 1979, 433.
- ⁹ A. R. Katritzky and S. S. Thind, J. Chem. Soc., Perkin. Trans. 1, 1980, 1865.
- ¹⁰ E. A. Zvedzdina, M. P. Zhdanov, V. A. Bren, and G. N. Dorofeyenko, Khim. Geterotsikl. Soedin., 1974, 1461.
- ¹¹ A. R. Katritzky, A. Krutosikova, C. A. Ramsden, and J. Lewis, Collect. Czech. Chem. Commun., 1978, **43**, 2046.
- ¹² A. B. Susan and A. T. Balaban, Rev. Roum. Chim., 1969, 14, 111.
- ¹³ A. T. Balaban and C. Toma, Tetrahedron, 1966, Suppl. 7, 1. ¹⁴ A. Williams, J. Am. Chem. Soc., 1971, 93, 2733.

- ¹⁵ R. Hubaut and J. Landais, C.R. Hebd. Seances Acad. Sci., 1974, 279c, 697.
- ¹⁶ S. Bersani, G. Doddi, S. Fornarini, and F. Stegel, J. Org.
- ¹⁷ G. Doddi, S. Fornarini, G. Illuminati, and F. Stegel, J. Org.
 ¹⁷ G. Doddi, S. Fornarini, G. Illuminati, and F. Stegel, J.
 ¹⁸ A. R. Katritzky, R. T. C. Brownlee, and G. Musumarra,
- Heterocycles, 1979, 12, 775.
 ¹⁹ A. R. Katritzky, R. T. C. Brownlee, and G. Musumarra, Tetrahedron, 1980, 36, 1643.
- ²⁰ A. R. Katritzky and R. H. Manzo, J. Chem. Soc., Perkin Trans. 2, 1981, 571.
- ²¹ A. R. Katritzky and D. E. Leahy, unpublished work.
- ²² A. R. Katritzky and S. Bravo, unpublished work.
 ²³ Carbon-13 NMR Spectra', ed. L. F. Johnson and W. C. Jankowski, Wiley, New York, 1972.
 ²⁴ A. R. Katritzky, G. Musumarra, K. Sakizadeh, S. M. M. El-Shafie, and B. Jovanovich, *Tetrahedron Lett.*, 1980, 2697.
 ²⁵ A. R. Katritzky, Marguet J. M. Lloyd, and J. C. Keav.
- ²⁵ A. R. Katritzky, J. Marquet, J. M. Lloyd, and J. G. Keay,
- in preparation. ²⁸ C. Toma and A. T. Balaban, *Tetrahedron*, 1966, Suppl. 7, 9.